Second Report by the United Kingdom under Article 17
on the implementation of the Directive from January 2001 to December 2006

Conservation status assessment for:
S1202: *Bufo calamita* - Natterjack toad
S1202 *Bufo calamita* Natterjack Toad

Audit trail compiled and edited by Joint Nature Conservation Committee, the Inter-Agency Herpetofauna Working Group and the Herpetofauna Conservation Trust

This document is an audit of the data and judgements on conservation status in the UK’s report on the implementation of the Habitats Directive (January 2001 to December 2006) for this species. Superscript numbers accompanying the headings below, cross-reference to headings in the corresponding Annex B reporting form. This supporting information should be read in conjunction with the UK approach for species (see ‘Assessing Conservation Status: UK Approach’).

1. **Range Information**

The natterjack toad is currently found in sparsely scattered locations across East Anglia, Lincolnshire, Hampshire and also along the coast of Cumbria, Cheshire, and Dumfries. Reintroductions have taken place in the Midlands and Wales.

1.1 **Surface area of range**

3,694km2

The above estimate was calculated within Alpha Hull software, using extent of occurrence as a proxy measure for range (see Map 1.2), at a resolution of 10km. Alpha was set at 20km to reflect not only the mobility of this species, but also the fine level at which it has been surveyed and is understood. The alpha hull (range area) was clipped to include terrestrial habitat only.

1.2 **Date of range determination**

1995 – 2006

The current date-class includes all records from the Herpetofauna Conservation Trust Rare Species Database and the Reptiles and Amphibians Dataset dated 1995 onwards. Expert opinion is that this data set provides the best representation of current distribution, as it is understood today.

1.3 **Quality of range data**

Good

This species has been well surveyed due to its nature conservation status and restricted distribution.

1.4 **Range trend and range trend magnitude**

Stable

The range of this species has probably remained stable since the Habitats Directive came into force in 1994. Further, reports by Buckley & Beebee (2004) suggest a slight increase over the last UKBAP reporting round (2001-2006).

1.5 **Range trend period**

1994 – 2006
1.6 Reasons for reported trend in range

Not applicable

1.7 Favourable reference range

4,100km² (Greater than current)

The decision tree in Note 1 has been used as a guide in determining the favourable reference range estimate (see ‘Assessing Conservation Status: UK Approach’).

Map 1.2 shows the historical extent of occurrence (23,242km²), calculated using records dated from 1800 to 1994. A comparison of this, and the current extent of occurrence (3,694km²), suggests an 84% decline in range since the turn of the 19th Century. Although the range has remained relatively stable since the Habitat Directive came into force in 1994, it has yet to recover from these historic declines.

If intensive conservation were to be withdrawn, species specialists are not confident that the range would be sufficiently comprehensive to support viable populations in the long-term. However any decline would be unlikely to exceed 1% per annum. (This judgement is based on knowledge of the species’ ecology, its previous distribution and the potential to re-establish the species.)

For these reasons, the current (and hence 1994 range) are not considered a sufficient baseline for the favourable reference range. Rather, in accordance with the UK approach, it has been set at 10% greater than the current estimate, i.e. 4,100 km².

S1202 Bufo calamita Natterjack Toad
Second Report by the United Kingdom under Article 17 on the implementation of the Directive from January 2001 to December 2006

1.8 Range conclusion

Unfavourable-Inadequate but improving
The favourable reference range is more than the current estimate, but not by a factor more than 10%. The range conclusion is therefore Unfavourable – Inadequate, but improving to reflect post-2001 trends (attributed to conservation action).

2. Population of the Species

2.1 Population estimate

2,500 breeding females
Natterjack toads were noted as occurring at 54 sites during the 2005 biodiversity action plan reporting round, comprising 2,500 breeding females (Species Action Plan target review, Gleed-Owen et al. 2005a, b).

2.2 Date of population estimate

2004

2.3 Method of population estimate

2 = extrapolation from surveys of part of the population, sampling
This was an approximation of the total annual spawn counts at all natterjack populations across England and Wales (Gleed-Owen et al. 2005a, b).
2.4 Quality of population data

Good

Natterjack sites are very restricted, and all have been extensively surveyed. Therefore although the population estimate is not from a complete inventory as such, it is reported here with high confidence.

2.5 Population trend and population trend magnitude

Stable

Historically, this species has suffered massive declines in population. This is supported by the large decline in the number of occupied 10km-squares reported since the turn of the 19th century (historical area of occupancy was reported above as 115 10km-squares, current area of occupancy was 36 10km-squares, suggesting an 84% decline).

Since the Habitats Directive came into force, the population has remained relatively stable. However, an increase of 8% was reported between the number of sites in 2002 and 2005 biodiversity action reporting rounds (50 and 54, respectively).

2.6 Population trend period

1994 – 2006

2.7 Reasons for reported trend in population

Not applicable

2.8 Justification of % thresholds for trends

Not applicable

2.9 Main pressures

100 Cultivation
101 Modification of cultivation practices
141 Abandonment of pastoral systems
400 Urbanised areas, human habitation
410 Industrial or commercial areas
500 Communication networks
701 Water pollution
800 Landfill etc
853 Management of water levels
920 Drying out
965 Predation

2.10 Threats

101 Modification of cultivation practices
390 Mineral extraction activities not referred to above – specifically chalk and clay extraction
400 Urbanised areas, human habitation
410 Industrial or commercial areas
500 Communication networks
601 Golf course
608 Camping and caravans
730 Military manoeuvres
800 Landfill etc
803 Infilling of ditches, dykes, ponds, pools, marshes
810 Drainage
853 Management of water levels
871 Sea defence or coast protection works
920 Drying out
953 Acidification
954 Invasion by a species
965 Predation
969 Other forms/mixed forms of interspecific faunal competition

2.11 Favourable reference population2.7.2

10,000 breeding females (Current is more than 25% below the favourable reference population)

The decision tree in Note 1 has been used as a guide in determining the favourable reference population estimate (see ‘Assessing Conservation Status: UK Approach’).

Recent work suggests that the UK natterjack population should comprise at least 25,000 breeding females, this figure is based on likely population numbers within potential (realistic) areas of habitat creation and restoration (Natterjack Toad SAP Steering Group). Expert opinion is that this value is more reflective of a favourable reference value than the current population estimate. Given the difficulties inherent in estimating a true value and in line with the guidance developed, a favourable reference population of at least 10,000 breeding females is given here i.e. the 1994 baseline is assumed to be considerably less than 75% of the FRP.

2.12 Population conclusion2.8

Unfavourable – Bad but improving

Although natterjack populations have been relatively stable since 1994, based on the information above, the population is not yet within 25% of the favourable reference population.

In accordance with Annex C, population is therefore assessed as Unfavourable-Bad, but improving, to reflect post-2001 increases.

3. Habitat for the Species in the Biogeographic Region or Sea2.5

This species is associated with sandy heaths, coastal dune systems and upper salt marshes. It is highly specialised in terms of its breeding requirements, showing preference for shallow water bodies in the earliest stages of succession with low levels of plant and animal life. Natterjacks excavate their own burrows, or use existing ones, in soft substrates such as sand. For this reason, active management to maintain open landscapes in both coastal and heathland habitats is usually necessary (Gent & Gibson, 2003).

3.1 Surface area of habitat2.5.2

100km2

Based on expert opinion and mapped distribution data and known habitat use, natterjack core habitat area has been estimated as 20km2, with buffer habitat comprising circa 100km2 (HCT in European Habitats Forum 2006).
3.2 Date of estimation2.5.3
2006

3.3 Quality of data on habitat area2.5.4
Moderate
All natterjack sites have been GIS mapped, but the polygon is probably an over-estimate of occupied area in most cases.

3.4 Habitat trend2.5.5
Stable
The two broad habitats most commonly associated with this present distribution of the species are southern lowland (sandy) heaths and coastal dunes.

About 70,000 ha of lowland heathland remain in the UK, which represents approximately 16\% of its extent in the 19th century. Many heaths have been lost due to afforestation, development and agricultural practices (source: www.jncc.gov.uk/page-1432).

Dune systems are naturally dynamic structures, but their general locations have remained mostly stable over the long term.

Attempting to relate these broad habitat trends specifically to natterjack toad habitat is problematic. However, overall, expert opinion is that since 1994, habitat within the present distribution of the population has most likely remained stable.

3.5 Habitat trend period2.5.6
1994 – 2006
The reported trend reflects the period after the Habitat Directive came into force.

3.6 Reasons for reported trend in habitat2.5.7
Not applicable
Historically, ponds and suitable terrestrial habitat have been lost through agricultural intensification, development, drainage, and sand abstraction; habitat fragmentation by agriculture and development; and successional changes on heath and dune sites.

3.7 Suitable habitat for the species (in km2)2.7.3
Unknown
Area of suitable habitat is unknown. However, the number of breeding ponds will always be a limiting factor of habitat used.

3.8 Habitat conclusion2.8
Unfavourable – Inadequate
Although recent restoration programmes have (to some extent) stemmed the historic, negative habitat trends, coastal dunes and lowland dry heaths are still under threat. For this reason, natterjack habitat has been assessed as Unfavourable, but since there is no evidence to suggest that the habitat area “is clearly not sufficiently large to ensure the long term survival of the species”, or that “habitat quality is bad, clearly not allowing long term survival of the species”, in accordance with Annex C, the judgement is Inadequate, rather than Bad.
4. Future Prospects

Good prospects
This species is expected to survive and prosper.

Agri-environment schemes now better targeted and with good incentives, and should encourage habitat retention, enhancement and creation. Planning system and associated mechanisms are now increasingly likely to recognise the presence of the species and avert adverse impacts, whilst ensuring compensation where there are some impacts; most (90%) populations are now within SSSIs and so should be protected. New emphasis on habitat creation in planning could, in theory, result in major gains.

The Biodiversity Action Plan process alerts many to the requirements of the species. New legal duties (Nature Conservation (Scotland) Act 2004, NERC Act 2006) should mean that public bodies take greater account of the species. Reintroduction methods are well understood (though not always successful on heathland) and can be used to establish new populations. Many of the foregoing positive comments rely on how well the mechanisms described are implemented and, even with many of these mechanisms working, in practice it will take many years to compensate for the substantial historical population losses. In addition, major losses still occur locally through arson.

4.1 Future prospects conclusion
Favourable

5. Overall Conclusion
Unfavourable-Bad but improving

Table 5.1. Summary of conclusions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Judgement</th>
<th>Grounds for Judgement (in accordance with Annex C)</th>
<th>Reliability*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Unfavourable – Inadequate but improving</td>
<td>Any other combination Current range is below the favourable reference range, but stable and showing signs of recent improvement</td>
<td>2</td>
</tr>
<tr>
<td>Population</td>
<td>Unfavourable – Bad but improving</td>
<td>Current population is more than 25% below favourable reference population, but showing signs of recent improvement</td>
<td>2</td>
</tr>
<tr>
<td>Habitat</td>
<td>Unfavourable – Inadequate</td>
<td>Any other combination Although restoration programmes have stemmed historic declines, it is not yet sufficiently large or of adequate quality, to support the species at favourable status</td>
<td>3</td>
</tr>
<tr>
<td>Future Prospects</td>
<td>Favourable</td>
<td>Main pressures and threats to the species not significant; species will remain viable in the long-term</td>
<td>2</td>
</tr>
<tr>
<td>Overall Assessment</td>
<td>Unfavourable – Bad but improving</td>
<td>One or more Unfavourable – Bad Future prospects are Favourable, and range and population are showing signs of improvement</td>
<td>1</td>
</tr>
</tbody>
</table>

*1=High, 2=Moderate, 3=Low
Audit trail 8

High – Expert opinion is that the concluding judgement accurately reflects the current situation based on a professional understanding of the species. For range, population, and habitat, quality of data used to establish the current estimate has been identified as good; data used to inform trends is comprehensive and up to date.

Moderate – A greater understanding of the feature, or the factors affecting it, is required before a confident concluding judgement can be made by experts. For range, population, and habitat, the current estimate and/or trend are based on recent, but incomplete or limited survey data; or alternately, a comprehensive, but outdated (pre-1994) review.

Low – Judgements, and comprising estimates, are based predominately on expert opinion.

N/A – Assessment conclusion is unknown, on the basis of insufficient reliable information

6. References

Map Data Sources

Audit trail
S1202 Bufo calamita Natterjack Toad
The Herpetofauna Conservation Trust Rare Species Database and Reptiles and Amphibians Dataset (provided via the NBN Gateway)

Audit trail
S1202 *Bufo calamita* Natterjack Toad